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Abstract

The existence of rub-impact periodic motions in an eccentric rotor system is considered. A criterion for
the periodicity condition of n-periodic impacts is derived and other conditions for real rub-impacts are also
discussed. A method consisting of analytical and numerical techniques is presented to solve the existence
problem of rub-impact periodic motions. Some special results are obtained by theoretical analyses for rub-
impact rotor systems, including the existence of grazing circle motions and that of single-impact periodic
motions.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Rub-impact events often occur in high-speed rotating machinery such as generators and
turbines, and cause great damage to machines. There are a number of works studying the rub-
impact problem for application purposes and most of them make use of numerical and/or
experimental methods. Childs [1] studied the effect of rub-impacts on the appearance of
parametrically excited subharmonic vibrations of rotor systems. Choy and Padovan [2] discussed
the transient rub-interactions between a rotor and a casing in a rotating structure. Li and
Paidoussis [3] took account of a simplified rotor-casing system in which there is very rich
dynamical behaviour including bifurcations and chaos. Ehrich [4,5] published a series of papers
concerning observations of the subharmonic and chaotic regimes. The dynamics of a rotor system
with bearing clearance was studied by Flowers and Wu [6] using the analytical and experimental
methods, with particular interest in the influence of coupled disk/shaft vibration. Xie et al. [7]
considered the steady state dynamic behaviour of a rotor system supported by auxiliary bearings
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with clearance and presented some insight into the behaviour of such systems. Recently, von Groll
and Ewins [8] applied the harmonic balance method with arc-length continuation to investigate
rotor/stator contact problems, including periodic responses and their stability. Other noteworthy
works with regard to this topics are in Refs. [9,10]. A rub-impact rotor-dynamic system, which is
operating eccentrically within a clearance and in local contact with the stator, is virtually identical
in behaviour to piecewise linear oscillator systems that have been studied in a general form by a
number of authors [11–17]. These systems differ greatly from ordinary linear systems. Due to the
discontinuity of stiffness during rub-impacts, the flow in the phase space is not smooth, and
sometimes it is even discontinuous. It is just because of the non-linearity and non-smoothness that
complicated dynamical behaviour appears in rub-impact rotor systems. Usually rub-impact
dynamics problems can be solved only by numerical methods.
In this paper rub-impact periodic motions in an eccentric rotor system are considered. Some

criteria for rub-impact periodic motions are derived and discussed. Then the existence of rub-
impact periodic responses can be treated by means of a combination of analytical and numerical
methods. Under certain clearance conditions, it is verified that there exist grazing circle motions in
the rotor–casing system. The existence and non-existence of single-impact periodic responses for
high speed and small mass eccentricity are also shown.

2. Mathematical model

A simple rub-impact eccentric rotor system without damping is considered here. The whirling
motion of the rotor between two collisions can be described as

.x1 þ o20x1 ¼ eo2 cosðotÞ;

.x2 þ o20x2 ¼ eo2 sinðotÞ � f ;

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
oR

� �
; ð1Þ

where x1; x2 are the position components of the rotor centre in the Cartesian co-ordinates, o0 is
the natural frequency, e is the mass eccentric distance of the rotor, o is its rotation frequency, R is
the clearance between the rotor and the casing (see Fig. 1), and f represents an external force, such
as the gravitational force.
Assume that a rub-impact between the rotor and the casing occurs instantaneously when t ¼ t0

at ðx10;x20Þ with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21ðt0Þ þ x22ðt0ÞÞ

q
¼ R: From the law of impulse and from Coulomb’s law of

friction, it is known that the velocity components of the rotor just before and after the impact
satisfy the relations

vþ ¼ �kv�; pþ ¼ p� � mð1þ kÞv�; ð2Þ

where v�; vþ denote the radial whirling velocities and p�; pþ the annular whirling velocities at t0�
and t0þ; which denote the time just before and after the impact, respectively; 0okp1 is the
restitution coefficient and mX0 is the annular friction coefficient. It is clear that t0� ¼ t0þ by the
assumption of instantaneous impact.
In this paper the existence of rub-impact period-n motions of system (1) is studied; that is, an

impact repeats periodically with a period nT for given integer n; where T ¼ 2p=o is the rotation
period of the rotor. According to the number m of impacts in the time duration nT ; rub-impact
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period-n motions can be divided into two types: single-impact (m ¼ 1) motions and multiple-
impact motions (m > 1). The periodicity conditions of the responses are given as

xiðt0�Þ ¼ xiðt0� þ 2np=oÞ; ’xiðt0�Þ ¼ ’xiðt0� þ 2np=oÞ; i ¼ 1; 2: ð3Þ

Although the dynamics between two adjacent collisions is linear, collisions result in essential
non-linearity and non-smoothness in the rotor system. Therefore, the rub-impact motions of
system (1) are rather complicated because of the non-smooth features and multiple degrees of
freedom. It is usually difficult to give an analytical treatment for rub-impact motions of rotor
systems. Based on the piecewise-linear characteristics of system (1), however, an analytical
method is presented that gives rise to some theoretical results on periodic motions of system (1) to
help understand the dynamics of rub-impact systems.
Assume that the rub-impact rotor system is not in a resonant state, that is, oao0: The general

solution of the first equation of system (1) between two adjacent collisions is given by

x1ðtÞ ¼ A1 sino0ðt � t0þÞ þ B1 coso0ðt � t0þÞ þ ego2 cosðotÞ;

’x1ðtÞ ¼ A1o0 coso0ðt � t0þÞ � B1o0 sino0ðt � t0þÞ � ego3 sinðotÞ;
ð4Þ

where A1;B1 are constants determined by the initial conditions ðx10; ’x10Þ; and g ¼ ðo20 � o2Þ�1:
Now the constants A1 and B1 are determined. Let V10� and V10þ represent the velocity

components in the x1 direction of the rotor just before and after the impact, respectively. Thus

V10þ ¼ ’x1ðt0þÞ ¼ vþ cos y� pþ sin y; V10� ¼ ’x1ðt0�Þ ¼ v� cos y� p� sin y; ð5Þ

where y is the polar angle of the rub-impact position ðx10;x20Þ so that

cos y ¼ x10=R; sin y ¼ x20=R: ð6Þ

From the initial conditions x1ðt0þÞ ¼ x10; ’x1ðt0þÞ ¼ V10þ it turns out that

A1 ¼ ½V10þ þ ego3 sinðot0þÞ�=o0; B1 ¼ x10 � ego2 cosðot0þÞ: ð7Þ
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By considering the periodicity condition (3), that is, x1ðt1Þ ¼ x10 and ’x1ðt1Þ ¼ V10� when t1 ¼
t0� þ 2np=o; it follows that

x10 ¼ A1Sn þ B1Cn þ ego2C0; ð8aÞ

V10� ¼ A1o0Cn � B1o0Sn � ego3S0; ð8bÞ

where S0 ¼ sinðot0Þ;C0 ¼ cosðot0Þ;Sn ¼ sinð2npo0=oÞ and Cn ¼ cosð2npo0=oÞ:
Similarly, within the time interval ðt0�; t0� þ 2np=oÞ the general solution of the second equation

of system (1) between two adjacent collisions is given by

x2ðtÞ ¼ A2 sino0ðt � t0þÞ þ B2 coso0ðt � t0þÞ þ ego2 sinðotÞ � f =o20;

’x2ðtÞ ¼ A2o0 coso0ðt � t0þÞ � B2o0 sino0ðt � t0þÞ þ ego3 cosðotÞ;
ð9Þ

where A2 and B2 are constants determined by the initial conditions.
Let V20� and V20þ stand for the velocities of the rotor just before and after the impact,

respectively. Then

V20þ ¼ ’x2ðt0þÞ ¼ vþ sin yþ pþ cos y; V20� ¼ ’x2ðt0�Þ ¼ v� sin yþ p� cos y: ð10Þ

From the initial conditions x2ðt0þÞ ¼ x20 and ’x2ðt0þÞ ¼ V20þ; it turns out that

A2 ¼ ½V20þ � ego3 cosðot0þÞ�=o0; B2 ¼ x20 � ego2 sinðot0þÞ þ f =o20: ð11Þ

Once more by the periodicity conditions (3), that is, x2ðt2Þ ¼ x20 and ’x2ðt2Þ ¼ V20� when t2 ¼
t0� þ 2np=o; it follows that

x20 ¼ A2Sn þ B2Cn þ ego2S0 � f =o20; ð12aÞ

V20� ¼ A2o0Cn � B2o0Sn þ ego3C0; ð12bÞ

in which the definitions of Sn;Cn;S0 and C0 are the same as those in Eqs. (8a) and (8b).
Solving Eqs. (8a) and (12a) simultaneously and using Eqs. (2), (5), (7), (10) and (11), it can be

seen that

v� ¼ ½Snðh1x10 þ h2x20Þo0��1f�ð�1þ CnÞx210o
2
0 � x10o0ðego2S0Sn

� ð�1þ CnÞðego2C0 � x10Þo0Þ þ x20ðf þ ego2C0Sno0

� ego2S0o20 þ Cnð�f þ ego2S0o20ÞÞg; ð13aÞ

p� ¼ ½Snðh1x10 þ h2x20Þo0��1fR½h2o0ðego2S0Sn

� ð�1þ CnÞðego2C0 � x10Þo0 þ h1ðf þ ego2C0Sno0

� ego2S0o20 þ x20o20 � Cnðf � ego2S0o20 þ x20o20ÞÞ�g; ð13bÞ

where

h1 ¼ �ðk=RÞx10 þ ðmð1þ kÞ=RÞx20; h2 ¼ �ðk=RÞx20 � ðmð1þ kÞ=RÞx10: ð14Þ

Obviously, it is essential to ensure

Snðh1x10 þ h2x20Þo0a0 ð15Þ
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so that the formula (13) holds. Furthermore, the inequality (15) implies that

2no0a *ko; *k ¼ 0; 1; 2;y: ð16Þ

Substituting Eqs. (13a) and (13b) into Eqs. (8b), (12b) and using Eqs. (2), (5), (7), (10) and (11),
the equations for C0 and S0 are given as

a11 þ a12C0 þ a13S0 ¼ 0; ð17Þ

a21 þ a22C0 þ a23S0 ¼ 0; ð18Þ

where

a11 ¼ � Rh1ðf ð�1þ CnÞx20 þ ð�Cn þ C2n þ S2nÞx
2
10o

2
0 þ ð�1þ CnÞx220o

2
0

þ x10ðð�1þ CnÞx210o
2
0 þ ð�1þ CnÞx220o

2
0 þ x20ð�f � RC2nh2o20

� Rh2ð1þ S2nÞo
2
0 þ Cnðf þ 2Rh2o20ÞÞÞ;

a12 ¼ ego2o0ðRoh1Snx20 � oSnx10x20 þ Rh1ð�Cn þ C2n þ S2nÞx10o0

� ð�1þ CnÞx210o0 þ Rh2ð1� 2Cn þ C2n þ S2nÞx20o0Þ;

a13 ¼ �ego2ðRh1 � x10Þo0ðoSnx10 � ð�1þ CnÞx20o0Þ;

a21 ¼ � fRh2S
2
nx20 � fx220 þ Rh2x

2
10o

2
0 � x210x20o

2
0 � Rh2S

2
nx220o

2
0 � x320o

2
0

� Rh1ð1� 2Cn þ C2n þ S2nÞx10ðf þ x20o20Þ � RC2nh2x20ðf þ x20o20Þ

þ CnðRh2ðfx20 � x210o
2
0 þ x220o

2
0Þ þ x20ðfx20 þ x210o

2
0 þ x220o

2
0ÞÞ;

a22 ¼ ego2ðRh2 � x20Þo0ðoSnx20 þ ð�1þ CnÞx10o0Þ;

a23 ¼ ego2o0ðoSnx10x20 þ Rh1S
2
nx10o0 þ ð�1þ CnÞðRð�1þ CnÞh1x10 � x220Þo0

þ Rh2ð�oSnx10 þ ð�1þ CnÞCnx20o0 þ S2nx20o0ÞÞ

with the initial impact position ðx10; x20Þ as parameters. Considering Eqs. (17) and (18) as a system
of linear algebraic equations with respect to C0 and S0; for nda0 this follows that

C0 ¼ nc=nd ; S0 ¼ ns=nd for nda0; ð19Þ

where

nd ¼ ego2o20ðð�1þ CnÞðx210 þ x220Þo0 � Rh1ðoSnx20 þ ð�1þ CnÞCnx10o0

þS2nx10o0Þ þ Rh2ðoSnx10 � ð�1þ CnÞCnx20o0 � S2nx20o0Þ;

nc ¼ x10ð�Rh2S
2
nx20o30 þ ð�1þ CnÞðx210 � RCnh2x20 þ x220Þo

3
0

þ oSnx10ðf þ Rh2o20Þ � Rh1ðð�1þ CnÞCnx10o30 þ S2nx10o30 þ oSnðf þ x20o20ÞÞÞ;
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ns ¼oSnx10x20ðf þ Rh2o20Þ � Rh2S
2
nx20o0ðf þ x20o20Þ

þ ð�1þ CnÞðx210 þ x20ð�RCnh2 þ x20ÞÞo0ðf þ x20o20Þ

� Rh1ðoSnx20 þ ð�1þ CnÞCnx10o0 þ S2nx10o0Þðf þ x20o20Þ: ð20Þ

Using Eq. (19), the identity C20 þ S20 ¼ 1 gives

n2c þ n2s ¼ n2d : ð21Þ

Substituting Eq. (14) into Eq. (21), the following equation can be deduced:

n10 þ n20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x210

q
þ ðn11 þ n21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x210

q
Þx10 þ n22x

2
10 ¼ 0; ð22Þ

where

n10 ¼ R4ð�ð1þ kÞmoSn þ ð�1þ CnÞð1þ kCnÞo0 þ kS2no0Þ
2ðf 2 þ ðR2 � e2g2o4Þo40Þ;

n20 ¼ 2fR4o20ð�ð1þ kÞmoSn þ ð�1þ CnÞð1þ kCnÞo0 þ kS2no0Þ
2;

n11 ¼ �2f ð1þ kÞR4oSno20ðð1þ kÞmoSn � ð�1þ CnÞð1þ kCnÞo0 � kS2no0Þ;

n21 ¼ �2f 2ð1þ kÞR2oSnðð1þ kÞmoSn � ð�1þ CnÞð1þ kCnÞo0 � kS2no0Þ;

n22 ¼ �f 2ð1þ kÞR2oSnðð1þ kÞð�1þ m2ÞoSn � 2mð�1þ CnÞð1þ kCnÞo0 � 2kmS2no0Þ:

Eq. (22), which represents the periodicity condition of rub-impact, gives an important criterion
for n-periodic impacts of the rub-impact rotor system (1). There are still other requirements for a

real impact at ðx10;x20Þ; such as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx210 þ x220Þ

q
¼ R for the impact position and v� > 0 for the

impact radial velocity. The number of impacts in the n-period time should also be discussed
further.

3. Existence of rub-impacting periodic motions

Now consider the existence of rub-impact periodic motions in the rotor system (1). Obviously,
when Eq. (22) has a real solution x10pR for given n; there may exist an impact period-n motion

with ðx10;x20Þ as the original impact position, where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx210 þ x220Þ

q
¼ R: Although there is no

explicit expression for the solutions of the non-linear algebraic Eq. (22), this existence problem
can be solved through the combination of both analytical and numerical techniques in general.
Under the given parameters of the rotor system and the value of n; at first one finds the real roots,
x10; of Eq. (22). Then C0; S0 and the initial time t0 are calculated by Eq. (20). The velocity
components just before and after the impact, that is, V10� and V10þ; follow from Eqs. (13a), (13b),
(2) and (5). The other requirements for an impact, such as v� > 0; should also be considered.
Finally, the corresponding impact period-n solution of the rub-impact system (1) can be obtained
by numerical integration under the initial conditions ðx10;x20;V10�;V10þÞ at t ¼ t0: By means of
the above method, one can find all impact period-n motions and then solve the existence problem.
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Although the existence of impacting periodic motions of the rub-impact rotor system (1) cannot
be solved in a wholly analytical way, some theoretical analysis will be discussed in what follows.
Firstly, the Eq. (22) can be transformed into the form

l0 þ l1x10 þ l2x210 þ l3x310 þ l4x410 ¼ 0; ð23Þ

where

l0 ¼ n210 � R2n220; l1 ¼ 2n10n11 � 2R2n20n21;

l2 ¼ 2n22n10 þ n211 þ n220 � R2n221;

l3 ¼ 2n22n11 þ 2n20n21; l4 ¼ n222 þ n221:

Especially, if l4a0 it is equivalent to

b4 þ b3x10 þ b2x
2
10 þ b1x

3
10 þ x410 ¼ 0; ð24Þ

where

b1 ¼ l3=l4; b2 ¼ l2=l4; b3 ¼ l1=l4; b4 ¼ l0=l4:

Solving Eq. (24) yields

x1;210 ¼

ffiffiffiffi
O

p
2

�
b1
4
7
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ

�b31 þ 4b1b2 � 8b3
4

ffiffiffiffi
O

p ;

s

x3;410 ¼ �

ffiffiffiffi
O

p
2

�
b1
4
7
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�

�b31 þ 4b1b2 � 8b3
4

ffiffiffiffi
O

p
s

; ð25Þ

where

F ¼ 2b32 � 9b1b2b3 þ 27b
2
3 þ 27b

2
1b4 � 72b2b4;

G ¼ �4ðb22 � 3b1b3 þ 12b4Þ
3 þ F2;

O ¼
ð

ffiffiffiffi
G

p
þ FÞ1=3

3
 21=3
þ

b21
4
�
2b2
3

þ
21=3ðb22 � 3b1b3 þ 12b4Þ

3ð
ffiffiffiffi
G

p
þ FÞ1=3

;

D ¼ �
ð

ffiffiffiffi
G

p
þ FÞ1=3

3
 21=3
þ

b21
2
�
4b2
3

�
21=3ðb22 � 3b1b3 þ 12b4Þ

3ð
ffiffiffiffi
G

p
þ FÞ1=3

:

Obviously, only the real solutions of Eq. (23) (or (24)) with x10pR can be considered as the
initial values in this rub-impact problem.
Secondly, consider a special case, in which f ¼ 0 (that is, there is no external force), and let the

original impact position be ðx10;x20Þ ¼ ðR; 0Þ: Thus one of the solutions of Eq. (22) is

x10 ¼ R ¼ eo2 gj j: ð26Þ
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Furthermore, it follows from Eqs. (13a) and (13b) that

v� ¼ 0; p� ¼ Ro: ð27Þ

This implies that in this case there exists a grazing rub-impact if the clearance condition (26) is
satisfied. By means of Eqs. (7) and (11), it is shown that A1 ¼ B1 ¼ A2 ¼ B2 ¼ 0: Thus the rub-
impact solution is

x1ðtÞ ¼ ego2 cosðotÞ; x2ðtÞ ¼ ego2 sinðotÞ: ð28Þ

Thus x21ðtÞ þ x22ðtÞ ¼ e2g2o4 ¼ R2 for all time t, and then the rotor contacts the stator in a whole
circle. This special motion is named as a grazing circle motion of the rotor.
Thirdly, consider other special cases in which the rotation frequency o is sufficiently large.

Suppose that there is at least a real solution of Eq. (22) in the following discussion. This hints that
the periodicity condition of a rub-impact motion in system (1) is met, and it is still necessary to
identify whether the condition v� > 0 holds at ðx10;x20Þ or not. Considering the case of o-þN;
Eqs. (7) and (11) become

A1 ¼ �
f ð�1þ CnÞx10ðx10 � mx20Þ

mSnðx210 þ x220Þo
2
0

þ Oðo�1Þ; B1 ¼
fx10ðx10 � mx20Þ
mðx210 þ x220Þo

2
0

þ Oðo�1Þ;

A2 ¼ �
f ð�1þ CnÞx10ðmx10 þ x20Þ

mSnðx210 þ x220Þo
2
0

þ Oðo�1Þ; B2 ¼
fx10ðmx10 þ x20Þ
mðx210 þ x220Þo

2
0

þ Oðo�1Þ:

Therefore, the whirling components are

x1ðtÞ ¼ ego2 cosðotÞ þ fAðx10;mÞuðtÞ þ Oðo�1Þ;

x2ðtÞ ¼ ego2 sinðotÞ þ fBðx10; mÞuðtÞ � f =o20 þ Oðo�1Þ; ð29Þ

where

A ¼ x10 x10 � m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x210

q� �
=R2mo20; B ¼ x10 mx10 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x210

q� �
=R2mo20;

uðtÞ ¼ ðð1� CnÞ=SnÞ sin½o0ðt � t0Þ� þ cos½o0ðt � t0Þ�:

From Eq. (13a), v� can be formulated as

v� ¼ �2f ð1� CnÞx10=ð1þ kÞmSnRo0 þ Oðo�1Þ: ð30Þ

Without loss of generality, the case of x10 > 0 is considered. By the condition of v� > 0 at the
original impact position, it follows from Eq. (30) that nAðo=2o0; 3o=4o0Þ or nAð3o=4o0;o=o0Þ
can assure this requirement. In fact, for instance, the former corresponds to 2npo0=oAðp; 3p=2Þ;
and then ð1� CnÞ=Sno� 1 and v� > 0 as o-þN: This means that if the rotation frequency o
is sufficiently large, then only the rub-impact period-n motions for nAðo=2o0; 3o=4o0Þ or
nAð3o=4o0;o=o0Þ may exist in system (1).
Now make more discussion on the number of impacts in the time duration nT of a rub-

impact period-n motion. Remembering that g ¼ ðo20 � o2Þ�1-0 as o-þN; it is clear from (29)
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that for tAðt0�; t0� þ 2np=oÞ

x21ðtÞ þ x22ðtÞ ¼ f 2C2ðx10;mÞu2ðtÞ þ 2efuðtÞ½Aðx10; mÞcosðotÞ

þ Bðx10; mÞsinðotÞ�o2=ðo20 � o2Þ þ e2o4=ðo20 � o2Þ2

þ ðf =o40Þ½f � 2fBo20u½t� � 2ego
2o20 sinðotÞ� þ Oðo�1Þ; ð31Þ

where

C2ðx10; mÞ ¼ A2ðx10;mÞ þ B2ðx10;mÞ ¼ ð1þ m2Þx210=R2m2o40:

Let j be given by tanj ¼ Aðx10; mÞ=Bðx10;mÞ: Then Eq. (31) becomes

x21ðtÞ þ x22ðtÞ ¼ f 2C2u2ðtÞ � 2efCuðtÞsinðot þ jÞ þ e2

þ ðf =o4Þ½f � 2fBo20u½t� þ 2eo
2
0 sinðotÞ� þ Oðo�1Þ

¼ ½fCuðtÞ � e sinðot þ jÞ�2 þ e2 cos2ðot þ jÞ

þ ðf =o4Þ½f � 2fBo20u½t� þ 2eo
2
0 sinðotÞ� þ Oðo�1Þ

� hðtÞ þ Oðo�1Þ; ð32Þ

where

hðtÞ ¼ ½fCuðtÞ � e sinðot þ jÞ�2 þ e2 cos2ðot þ jÞ

þ ðf =o40Þ½f � 2fBo20u½t� þ 2eo
2
0 sinðotÞ�:

As e is small enough usually, the function hðtÞ possesses the expression

hðtÞ ¼ ½fCuðtÞ�2 þ ðf =o40Þ½f � 2fBo20uðtÞ� þ OðeÞ

¼ ðf =o40Þ½C
2o40u

2ðtÞ � 2Bo20uðtÞ þ 1� þ OðeÞ

¼ ðf =o40Þ½ðBo
2
0uðtÞ � 1Þ

2 þ A2o40u
2ðtÞ� þ OðeÞ � *hðtÞ þ OðeÞ; ð33Þ

where *hðtÞ ¼ fo�4
0 ½ðBo20uðtÞ � 1Þ

2 þ A2o40u
2ðtÞ�:

Now when the rotation frequency o is large enough and the mass eccentricity e is small enough,
the number of impacts in the time duration nT of a rub-impact period-n motion for
nAðo=2o0; 3o=4o0Þ or nAð3o=4o0;o=o0Þ is determined by the property of the function *hðtÞ:
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Fig. 2. Time histories for (a) uðtÞ and (b) rðtÞ; ðx0; x20Þ ¼ ð0:8; 0:6Þ where e ¼ 0:01;o ¼ 50:1; m ¼ 0:5; k ¼ 1;o0 ¼ 1;R ¼
1; f ¼ 1:01; n ¼ 36:
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For example, if *hðtÞ
�� ��oR2; then x21ðtÞ þ x22ðtÞoR2 for tAðt0�; t0� þ 2np=oÞ: Hence there is no

collision between two adjacent impacts in the time duration nT ; and this corresponds to a single-
impact period-n motion. On the other hand, if there is a tAðt0�; t0� þ 2np=oÞ such that *hðtÞ

�� �� >
R2; then an impact may occur just before the time t because x21ðt

Þ þ x22ðt
Þ > R2 and the number

of rub-impacts is larger than 1 in the time duration nT : Thus the rub-impact period-n motion is
not a single-impact motion, but a multiple-impact one.
Fig. 2 presents the numerical results for the case of k ¼ 1;o0 ¼ 1;R ¼ 1; e ¼ 0:01;o ¼ 50:1;m ¼

0:5; f ¼ 1� ego21 ¼ 1:01; n ¼ 36Aðo=2o0; 3o=4o0Þ: Consider the rub-impact period-36 motions
in the time interval [0, nT)=[0, 4.51). Fig. 2(a) demonstrates the variation of uðtÞ; and Fig. 2(b)
shows the time history of the rotor motion originated from the initial impact position ðx10; x20Þ ¼

ð0:8; 0:6Þ; where rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21ðtÞ þ x22ðtÞÞ

q
: It is clear from Fig. 2(b) that rðtÞ would exceed the

boundary R ¼ 1 if there were no collision occurring, and this actually means that more rub-
impacts may happen in this time interval [0, 4.51), except the original impact at t ¼ 0: Thus there
is no single-impact period-36 motion in the system (1) under the given values of parameters, and
the rub-impact period-36 motion should be a multiple-impact one. More numerical simulations
show that the existence of rub-impact periodic motions is very sensitive to the parameters of the
rotor system. Moreover, when o is large enough and e is small enough, single-impact periodic
motions appear rarely in rotor systems and most of rub-impact periodic motions are multiple-
impact periodic, quasi-periodic or chaotic ones.

4. Conclusions

The existence of rub-impact periodic motions in an eccentric rotor system was discussed by
means of an analytical method. A criterion for the periodicity condition of periodic rub-impacts
was derived and other conditions for real rub-impacts were discussed. A method consisting of
analytical and numerical techniques was presented to study the existence of rub-impact periodic
motions, and the number of rub-impacts was also discussed.
Two special cases were discussed in detail by theoretical analyses for rub-impact periodic

motions:

1. Under the clearance condition R ¼ eo2 gj j; there may exist a grazing circle motion for the case
of f ¼ 0; that is, there is no external force. In this case, the rotor moves along the whole casing
surface and leads to serious effects on rotor systems.

2. Rub-impact period-n motions may occur in the rotor system (1) only for
nAðo=2o0; 3o=4o0Þ,ð3o=4o0;o=o0Þ when the rotation frequency o is large enough.
Moreover, rub-impacting usually results in multiple-impact periodic, quasi-periodic or chaotic
motions in rotor systems when the rotation speed is high and the mass eccentricity is small
simultaneously.

The effects of damping were not considered in this paper. There are various damping effects,
which play an important role in rub-impacts. In general, the rub-impact behaviour is likely to be
sensitive to damping and more investigation should be made. Only the simplest effect of damping
included in the rotor model can be treated theoretically in a way similar to that in this paper, but
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more complicated. Other effects of damping, such as the internal damping, the visco-elastic
damping and the damping of oil-film bearings, should be studied mainly by numerical simulation.
These will be considered in further work.
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